博客
关于我
thunlp的OpenNRE的使用
阅读量:186 次
发布时间:2019-02-28

本文共 931 字,大约阅读时间需要 3 分钟。

OpenNRE论文详细介绍了其各个组件的实现细节。该项目旨在构建一个高效的关系抽取框架,支持基于句子、袋子和少量样本的关系抽取方法。

OpenNRE 组成结构

OpenNRE由五个核心组件构成:Tokenization、Module、Encoder、Model 和 Framework。每个组件在实现中都具备特定的功能,能够协同工作以完成关系抽取任务。

Tokenization 组件

Tokenization 的主要任务是对输入文本进行分词处理。该组件支持将文本分割为 word-level 和 subword-level 两种 token 流。开发者可以通过继承 BasicTokenizer 类来实现新的 token 化方式。

Module 组件

Module 组件主要负责模型的基本功能模块,包括网络层、池化操作和激活函数等。这些模块为后续的编码器和模型提供了基础的计算能力。

Encoder 组件

Encoder 组件的作用是将输入文本编码为语义特征向量。基于 Tokenization 和 Module 组件,作者实现了 BaseEncoder 类,能够处理单个 token 的嵌入生成。此外,作者还开发了多种常用编码器结构,如 LSTM 和 BERT,以满足不同任务的需求。

Model 组件

Model 组件包含了 OpenNRE 实现的经典关系抽取模型,例如基于 CNN 的关系抽取模型。此外,该组件还集成了多种提升模型性能的算法,如注意力机制、对抗训练和强化学习等,以增强模型的表达能力。

Framework 组件

Framework 组件作为整个 OpenNRE 系统的核心,负责集成其他四个组件,支持数据处理、模型训练、优化和评估等多项功能。该组件特别支持基于 sentence-level、bag-level 和 few-shot 的关系抽取方法。

开发示例

OpenNRE 的框架设计简洁易用,开发者可以通过配置各组件的参数来完成关系抽取任务。例如,开发者可以通过选择不同的编码器结构和模型算法,来满足特定任务的需求。

通过以上组件的协同工作,OpenNRE 提供了一种灵活且高效的关系抽取解决方案,适用于不同规模的数据集和抽取任务。

转载地址:http://mwrn.baihongyu.com/

你可能感兴趣的文章
NFS Server及Client配置与挂载详解
查看>>
NFS共享文件系统搭建
查看>>
nfs复习
查看>>
NFS安装配置
查看>>
NFS的安装以及windows/linux挂载linux网络文件系统NFS
查看>>
NFS的常用挂载参数
查看>>
NFS网络文件系统
查看>>
nft文件传输_利用remoting实现文件传输-.NET教程,远程及网络应用
查看>>
NFV商用可行新华三vBRAS方案实践验证
查看>>
ng build --aot --prod生成文件报错
查看>>
ng 指令的自定义、使用
查看>>
nghttp3使用指南
查看>>
Nginx
查看>>
nginx + etcd 动态负载均衡实践(三)—— 基于nginx-upsync-module实现
查看>>
nginx + etcd 动态负载均衡实践(二)—— 组件安装
查看>>
nginx + etcd 动态负载均衡实践(四)—— 基于confd实现
查看>>
Nginx + Spring Boot 实现负载均衡
查看>>
Nginx + uWSGI + Flask + Vhost
查看>>
Nginx - Header详解
查看>>
Nginx - 反向代理、负载均衡、动静分离、底层原理(案例实战分析)
查看>>